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Small oscillations of an ideal incompressible liquid, which partially fills an inclined elastic container (a mobile cavity or channel) 
of arbitrary form and having a longitudinal plane of symmetry, are considered. The integral condition of continuity of the liquid 
is obtained by integrating the differential condition of incompressibility and exact satisfaction of the kinematic boundary conditions 
on the wetted side walls. Using this equation, systems of coordinate functions are constructed which represent the kinematically 
possible displacements of the liquid, for calculating the oscillations by the Ritz method and the finite-element method. The basic 
unknown functions, which describe the displacements of the liquid in cross-sections, are approximated by power functions and 
Legendre functions. Transverse layers of liquid, within the limits of the thickness of which a linear approximation for the unknown 
functions can be used, are considered as finite elements. 0 2004 Elsevier Ltd. All rights reserved. 

The Ritz method [l, 21 and the finite-element method [3] are usually employed to solve the problem 
of the small oscillations of a liquid, partially filling mobile cavities or elastic containers of arbitrary shape. 
In the case of an incompressible liquid, when solving the problem in displacements it is necessary to 
satisfy exactly the condition of incompressibility and the kinematic condition that the liquid is always 
in contact with the surface of the wall during motion, which introduces certain difficulties. Hence, the 
hydrodynamic pressure (or the potentials of the displacements, the velocities and accelerations of the 
liquid representing it) is most often considered as the basic unknown and the corresponding variational 
principle is used, on the basis of which the condition of incompressibility and the kinematic condition 
on the walls of the cavity when using the Ritz method and the finite-element method are satisfied 
approximately. 

A variational method of solution in displacements of the problem of the oscillations of an incompressible 
liquid inside an arbitrary shell of revolution was proposed in [4,5]. By integrating the incompressibility 
condition and satisfying the kinematic condition on the wetted surface of the shell the problem can be 
reduced to finding a single unknown function - a longitudinal displacement of the liquid as a function 
of the axial and radial coordinates. Then, using the Vlasov-Kantorovich method, a system of ordinary 
differential equations is obtained, and using the Ritz method and the finite-element method, a system 
of algebraic equations is obtained. 

A similar approach was used in [6] to solve, in terms of displacements, the problem of small mainly 
longitudinal symmetrical oscillations of an incompressible liquid in an inclined elastic container (a cavity 
or channel) of arbitrary shape with a longitudinal plane of symmetry, where power functions are used 
to approximate the displacements of the liquid in cross-sections of the cavity. Below we obtain a more 
accurate solution of this problem in another form using orthogonal Legendre functions to approximate 
the displacements of the liquid in cross-sections. Using the Ritz method and the finite-element method 
(transverse layers of the liquid are considered as the finite elements), the problem is reduced to a system 
of linear algebraic equations. 

1. THE INTEGRAL CONDITION OF INCOMPRESSIBILITY 
OF THE LIQUID 

Consider a container (a cavity or channel) with an arbitrary single-closed contour of variable cross- 
section, partially filled with an ideal incompressible liquid (Fig. 1). We will assume that the container 
is symmetrical about the xy plane, while the free surface of the liquid y = H(x) is perpendicular to this 
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plane. In the general case, the container has a bottom y = y0(x), elastic side walls z = +_b(x, y)  and a 
lid y = ya(x), the normal displacements of which are denoted by Wo(X, t), w(x, y, t) and Wa(X, t), while 
the outward unit normals to these surfaces are denoted by v0, v and Vl respectively. If the container is 
closed at y = Y0 and y = Yl, i.e. there is no bottom or lid, their transverse dimensions bo(x) = b(x, Yo) 
and ba(x) = b(x, Yl) must be assumed to tend to zero. In the case of oscillations that are symmetrical 
about the z = 0 plane, we will consider only half the cavity when z > 0. The displacements of the liquid 
in the directions of the x, y, z axes will be denoted by a)x, Vy, vz. 

The differential condition of incompressibility of the liquid and the kinematic conditions for motion 
without separation in the plane of symmetry, on the side wall and on the bottom can be written in the 
form 

~vx ~gvy + 3vy 
~x + ~y ~z = 0 (1.1) 

o z = 0 when z = 0 (1.2) 

w + ~b 3b 
Vz = v z ~x o~ + ~yy Vy when z = b(x,y) (1.3) 

Wo 
Oy = - -  + Yo V~ when y = yo(x) 

V0y 
(1.4) 

where 

_ _ _ ~  = ,2 1 1 -t-(~b'~2+ ¢~b~2, ! -~fl  + Yo 
v, ko~xJ k~g roy 

and Vz, V0y are the projections of the normals v and v0 on to the z andy  axes, respectively. 
In the plane of the end walls x = 0 and x = 1, the normal displacements of which are assumed to be 

specified, the kinematic boundary conditions have the form 

vx = u°(y, z, t) when x = 0, ox = ul(y, z, t) when x = l (1.5) 

To solve the problem in displacements using the Ritz method or the finite-element method, the 
condition of incompressibility (1.1) and the kinematic boundary conditions (1.2)-( 1.4) must be satisfied 
exactly. To do this we will reduce them to a single integral equation. Integrating Eq. (1.1) with respect 
to z and satisfying boundary condition (1.2), we obtain 

Z Z 

, , , =  - 

0 0 

(1.6) 

Substituting this expression into condition (1.3) and then integrating it with respect toy and satisfying 
condition (1.4), we obtain, after reduction, the integral condition of incompressibility of the liquid, taking 
the kinematic boundary conditions into account 
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~VydZ + Oxdz dy + F(x, y, t) = 0 
0 Yo " 0  I 

(1.7) 

where 
Y 

F(x , y , , )  = ~dY---v°ybo 
Yo 

(1.8) 

Consider further the cross-section x = const, in which the container is completely filled with liquid 
under the l idy = yl(x). It is necessary to satisfy the following kinematic boundary condition on the lid 

W 1 t 
Oy = m + Yl v~ when y = yl(x) (1.9) 

V l y  

where 

1 J ,2 
- -  = l + y  l 
V l y  

and vly is the projection of the normal v 1 onto they  axis. 
Taking condition (1.9) into account, wheny  = Yl we reduce Eq. (1.7) to the form 

Yt / b  ", 
W 1 ~Xyo,, O~'~-s{sDxdzIdy+ F(x'yI't)+~iybl = (1.10) 

If this equation is integrated with respect to x, we obtain an equation for the flow rate of the liquid 
through the cross-section x = const 

S/S x zl y -- .<x., ,  
Y0 " 0  / 

(1.11) 

where Q(x, t) is the volume of liquid displaced due to normal displacements of the walls in the cutoff 
part of the cavity. 

2. A P P R O X I M A T I O N  OF T H E  D I S P L A C E M E N T S  OF T H E  L I Q U I D  AND 
T H E  C O N S T R U C T I O N  OF T H E  E Q U A T I O N S  OF T H E  O S C I L L A T I O N S  

The components of the displacements of the liquid Vx and Vy in the case of symmetrical oscillations will 
be sought in the form (everywhere henceforth summation is carried out over n = 1, 2, ...) 

V~ = Uo(X, y, t) + Z Un(x, y, t)P2n(~) 

Vy = Vo(X, y, t) + ZV*n(x,  y, t)P2n(~ ) 
(2.1) 

where ~ = z/b; P2n(~) are even Legendre functions. 
Equation (1.7), where the displacements ~x and ~)y are represented in the form (2.1), is satisfied when 

V o = -  Uobdy+F , 
Y 

1 0  
v*  = U.bdy + v .  

Yo 

(2.2) 

Here  U0, U1, V1, U2, V2 . . . .  are functions of x, y and t to be determined; to satisfy condition (1.4) it 
is necessary that 

V n = 0 when y = Yo(X), n = 1,2 .... (2.3) 
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From expression (1.6), taking relations (2.1)-(2.3) into account, the displacement ~)z is defined as 

Vo = + + = ; + + v *  ; P 2 . ( ; )  - y/ 

b(V.b)  ~ 
(2.4) 

In the part of the container completely filled with liquid, boundary condition (1.9) on the surface of 
the lid will be exactly satisfied, if, according to Eq. (1.10), the functions U0, U1, 1/1, U2, V2 . . . .  are subject 
to the conditions 

y Yt 

Uobdy+F(X,  Yl, t )+~ ly b  1 = O, ~x IUnbdy  = O, 
Yo Yo 

n = 1, 2 . . . .  (2.5) 

V n = 0  when y=yo(x); V n=O when y=yl(x);  n = 1 , 2  .... 

Hence, in the partially and completely filled parts of the container, the main unknowns are the 
functions U0, U1, V1, U2, 1/2 . . . . .  They can be sought in the form of polynomials in powers ofy  

U.(x ,  y, t) = Uno(X, t) + Unl(X, t ) y  + U . z (x ,  t ) y  2 + ... 

Vn(X, y, t) = VnO(X, t) + Vnl(X , t)y + Vn2(X, t)y 2 + ... 
(2.6) 

where U,i(x, t), Vni(X, t) are unknown functions (n, i = 0, 1, 2 . . . .  ); here the highest degree ofy  must 
not be less than the highest degree ofz  of terms retained in series (2.1). 

When using the expansion of a) x in series (2.1) and (2.6) in powers of z and y, boundary conditions 
(1.5) on the ends x = 0 and x = 1 can be satisfied exactly, if these ends are undeformed (i.e. if they can 
only be displaced and turned in the xy plane). If there are elastic plates at these ends, boundary conditions 
(1.5) can be satisfied approximately using the method of least squares by minimizing the functionals 

H b  H b  

,o V. o .1. [!! = ( O x - U )  dz  = ( O x - U )  dz (H<Yl) 
LYoO ~ x  = 0 x = l 

Hence, the functions U,i(x, t) in expansions (2.6) must be determined taking into account the kinematic 
boundary conditions on the ends, and in the case when part of the cavity is completely filled, conditions 
(2.5) also. 

To solve the hydrodynamic problem (for specified displacements of the walls of the cavity) or the 
coupled problem of hydroelasticity (when the elastic displacements of the container walls, the bottom, 
the lid and the ends are unknown) one can use the Ritz method or the finite-element method. The 
latter is more convenient for calculations in the general case. Here, we consider as finite elements the 
liquid layers between the cross-sections x = xk (k = 0, 1 . . . .  N), bounded by the bottom, the container 
walls and the free surface of the liquid (or the lid). 

For a liquid layer with a free surface, bounded by the cross-sectionsx = xk_l andx = xk, in the quadratic 
approximation (n = 1), the unknown functions Uo(x,y, t), Ul(x,y, t) and Vl(x,y, t) can be represented 
in the form 

(U o, Up V1) = (R(ok-'), ~'k-')''l , R~k-1))O~k-I + (R(ok), R~k), R~k))fSk 

R(km)(y) (k) + r ~ y +  (k) 2 = rmo rm2Y, m = O, 1, 2 

X - - X k _  1 X - - X k _  1 
a k _ , ( x )  = 1 , f~k(x) - 

X k  --  X k -  1 X k  -- X k -  1 

(2.7) 

Hence, retaining only two terms with U0, U1 and V0, V~ in expansions (2.1), the finite element in the 
form of a liquid layer with a free surface, taking conditions (2.3) into account, i.e. when 
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V;(xk_l ,  Yo(Xk_l) , t  ) = O, Vl(xk, yO(xk),t ) = 0 

YO(x) = yo(Xk- l )~k -  1(x) + Yo(Xk)~I~(X), xk- l < X < X k 

will have 16 degrees of freedom - 8 at each end, which can be represented by 16 linearly independent 
generalized coordinates r(mk~-l)(t) and rkmi(t). 

For a liquid layer in the completely filled part of the cavity, it is necessary to satisfy conditions (2.5). 
These additional conditions for the functions Uo(x, y, t), Ul(X, y, t) and Vt(x, y, t) on the left end 
(x = Xk_l) and on the right end (x = xk) of the layer can be written in the form 

IY! ] Xfl ~yWI l l Y i l  Uobdy + F(x, Yl, t) + ~-~-b I dx = Uobdy 
IX = X k Xk - I l..y 0 IX ---~ .I[k _ I  'i-1 rY -1 

Ulb = Ulb 

I_y 0 _1~ ~ X k l y  0 .JX = X k - 1 

(2.8) 

V1(Xk_l, yO(xk_l),t) = O, VI(Xk, Yo(XD, O = 0 

V1(Xk_~,yl(Xk_l),t) = O, Vl(Xk, Yl(XD, t) = 0 

Using these 6 conditions we can eliminate 6 generalized coordinates, for example, r~ ), (k) (k-l) (k-l) r l  0 , r ; )  0 ,r21 , 
r(k) r~kl ). As a result, for the quadratic approximation of agx and Vy with respect to the coordinates z and 20, 
y of the liquid layer in the completely filled part of the container, we will have 12 degrees of freedom 

- seven on the left end and five on the right end. 
If, in the version of the finite-element method considered, we use the three-term approximations 

(2.1) for vx and Vy, where U0, U1, VI, U2, and V 2 a r e  complete polynomials iny up to the fourth power 
inclusive, and the linear approximation in x within the limits of the layer thickness, the liquid layer with 
a free surface will have 46 degrees of freedom - 23 at each end, while a liquid layer in the completely 
filled part of the container will have 39 degrees of freedom - 21 at the left end and 18 at the right end. 
If the geometrical parameters of an extended container (a channel) and its normal displacements vary 
fairly slowly along the contour and along the length, then, instead of relations (2.1) and (2.2) we can 
use for the calculation a single-term approximation with a linear approximation of v~ along y 

o x = Uo(x, y, t) = Uoo(X, t) + Uol(X, y)y  

:. 
v, = Vofx, y , t ) ,  = t, 0 +v0 + 

This approximation corresponds to the hypothesis of plane cross-sections of the liquid: for preferentially 
longitudinal oscillations of the liquid in a symmetrical cavity its cross-sections x = const are displaced 
in a longitudinal direction and are rotated, remaining plane. They are then deformed in its plane in 
accordance with the displacements agy and vz, which are determined from formulae (2.9) taking the first 
condition of (2.2) into account, so that the condition of incompressibility of the liquid and the kinematic 
boundary conditions on the wetted surface of the container are satisfied exactly. 

When using approximation (2.9) the liquid layer with a free surface has 4 degrees of freedom, 
~k-1) (k-l) .~) _(k) (see (2.7)). The liquid layer in the characterized by the generalized coordinates r00 , r01 , r00, r0x 

completely filled part of the container in this case, taking the first formula of (2.8) into account, has 
• (k-l) _(k-l) _(k) only 3 degrees of freedom, characterized by the generalized coordinates r00 , r01 , %1" 

When setting up the equations of the oscillations of a liquid in a fixed or mobile cavity or in an elastic 
container in generalized coordinates using the Ritz method or the finite-element method, expressions 
are used for the kinetic and potential energy of the liquid, which in this case can be written in the form 

lHb 
T .  = 2 ~ a j j ( V x + D y + D z ) d z d y d x ,  H ( x ) < y l ( x )  

OyoO 
(2.10) 

I btt 
P-~ff I'1' 2 dzdx 

11. = 2 o 0 [D r- V~]y__ n / 1  + /_/,2' bt4(x) = b ( x , H )  
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Here p is the liquid density and g is the acceleration due to gravity, the vector of which is perpendicular 
to the free surface of the liquid. If part of the container is completely filled (H = Yl), the potential energy 
of gravitational waves of the liquid in this part is equal to zero. 

3. E X A M P L E S  OF THE C A L C U L A T I O N  OF THE N A T U R A L  
O S C I L L A T I O N S  OF THE L I Q U I D  

A cavity in the form of a rectangular horizontal channel. In this case the problem of the longitudinal 
oscillation of a liquid is plane. The longitudinal displacement for the lowest oscillation mode, according 
to expressions (2.6) taking the boundary conditions Vx = 0 when x = 0 and x = 1 into account, can be 
represented in the form 

2 
o x = U o = (r  o + q y  + r2Y + . . . ) s i n ( n x l l ) s i n o 3 t  

where r0, rl, r2, ... are unknown coefficients. 
The values of the square of the dimensionless lowest frequency ~ 2 = mZH/g, obtained by the Ritz 

method in the single-, two- and three-term approximations for a depth H = 2//n, are equal to 1.7143, 
1.9091 and 1.92776 respectively; the exact solution for the potential motion of the liquid gives a values 
of 1.92805. Note that the single-term approximation corresponds here to long-wave theory [7], while 
the two-term approximation corresponds to the hypothesis of plane sections of liquid. 

A cavity in the form of a horizontally placed circular cylinder (Fig. 2). The solution by the Ritz method 
corresponding to the hypothesis of plane sections of liquid (2.9), for the lowest oscillation mode will 
be sought in the form 

I) x = U o = (ro(t)  + r l ( t ) y ) s in ( l~x l l )  

This solution, for the given theoretical model, is exact. Together with this we will construct a numerical 
solution of this problem in the same formulation by the finite-element (layers) method. The cavity is 
divided into N similar layers, perpendicular to the x axis. Within each layer a solution is obtained in 
the form (2.9) using linear approximations with respect to x for the functions Uoo(X, t) and Uoa(X, t). In 
this case, longitudinal displacements and angles of rotation of the plane sections of the liquid, separating 
the layers, are considered as the generalized coordinates. 

In Table 1 we present the results of calculations of the square of the dimensionless lowest frequency 
m2R/g for I = 2R and different depths of filling using finite-element method based on the hypothesis 
of plane sections of the liquid with N = 4, 8, 16; we also show the exact solution in displacements using 
the hypothesis of plane sections of the liquid and the solution obtained by the Ritz method for potential 
motion of the liquid [2]. 

A circular cylindrical cavity with an inclined free surface of the liquid. This case corresponds to an 
inclined cylindrical cavity with a horizontal liquid surface. The left part of the cavity is completely filled 
while the right part is partially filled (Fig. 3). The depth of filling when the free surface is perpendicular 
to the axis of the cavity is a = 2R. 

Table 2 shows values of square of the dimensionless lowest frequency of the oscillations of a liquid 
in a cavity o3~R/g for different angles of inclination of the free surface [3, obtained using the finite-element 
(layers) method based on the hypothesis of plane sections of the liquid with N = 6 and N = 12; we also 
show the results of a calculation by the Ritz method for the potential motion of the liquid [2]. 
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Table 1 
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FEM 

Method H/R -- -0.5 0 0.5 

N = 4  

N = 8  

N= 16 

Exact solution 

Ritz method 

0.808 

0.781 

0.774 

0.762 

0.763 

1.335 

1.300 

1.291 

1.287 

1.288 

1.658 

1.625 

1.617 

1.604 

1.635 

Table 2 

Method 

N = 6  
FEM 

N= 12 

Ritz method 

[3 = 30 ° 40 ° 50 ° 60 ° 

1.233 

1.384 

1.408 

1.092 

1.102 

1.118 

0.780 

0.793 

0.800 

0.472 

0.486 

0.492 

O 

Y 
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Fig. 3 
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The results obtained for the natural oscillations of the liquid in symmetrical cavities show that the 
simplest approximation of the longitudinal displacements of the liquid, corresponding to the plane- 
section hypothesis, gives completely acceptable accuracy in calculations of the lowest frequency. 
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